Piotr Gnysinski: QA Wizard, Former Farmhand, and Family Man

We originally started the “You in the Private Cloud” series as a way to introduce our talented team to each other across our many geographies. I knew it was important for us to know each other as more than email addresses or voices during meetings.

But I didn’t realize at the time that it would become one of the favorite parts of my job. I truly love settling in for great conversations with the terrific people working on IBM Analytics offerings across the globe.

This time was no different. Many of you know that we have a vibrant presence in Krakow, Poland. And while there recently I got the chance to visit with Piotr Gnysinski who works as Test Lead on the Information Governance Catalog, a key part of our InfoSphere Information Server offering.

Picture1PG

Piotr with Dinesh

Dinesh: I know you worked for a while for Comarch whose founder is Janusz Filipiak. Tell me about that experience.

Piotr: When I joined, Comarch was already a big company. It was my first job in IT and the first time I experienced emotions from customers coming our way: real people on the receiving end of my work — sometimes with real joyful reactions, sometimes with irritation as a result of bugs that made it through to the field.

I had to switch to real proactive thinking. I would say this attitude —this deep and strong engagement for customer advocacy and not just technical skills — is the most important single characteristic that can help someone do well in our business, or any business for that matter.

Dinesh: You’ve got a reputation for designing robust testing frameworks that cover a lot of ground. I think testing can seem like a mystery to many of us. Give me a sense of how you approach things.

Piotr: It depends on what you’re testing, but a big tool for us across the board is the idea of pair-wise testing. We know from studies that most defects can be discovered in tests of the interactions between the values of two variables (65-97%)[1]. A factor could be the browser vendor, the underlying operating system, and so on.

So, when you have an almost infinite number of tests you could run and very limited time, you first think of all those possible factors and figure out their possible values, then you classify these into groups called “equivalence classes”. You know that testing a single value from a class will probably give the same result as testing any other value in the group, so now you use algorithms that make sure each pair of classes is covered at least once — and you make sure to mix up which specific values are getting tested in the different pairs. That gives you good coverage.

I’ll send you a link to some information about Combinatorial Test Design if anybody wants to read up some more.

Picture2PG

Piotr with wife Justyna, daughter Julia, and son Szymon

 

Dinesh: What do you do on weekends for fun?

 

Piotr: Almost every weekend, my wife Justyna and I take our son and daughter on some adventure: water park, bike riding, or visiting the playground. But my favorite is to bring them to visit Henrykow, which is a small village with about 30 people. My aunt and uncle have a farm and I used to go there every summer when I was a kid. I collected so many fantastic memories from there.

So now, whenever I have a chance, I pack up the family and two hours later we are in ‘Neverland’. They still keep livestock and they still work the land, so my kids get to see and do all that as well. For instance, not so long ago, they witnessed a calf being born, they very often get to ‘drive’ — being on my lap — a tractor, play in the hay for hours, or we go through the woods or the swamps, which always ends up with at least two of us all wet and muddy.

Picture3PG

At the beach with friends and family 

Dinesh: It looks like you also make it to the gym once in a while. Am I crazy?

Piotr: Ha! Yes, I do weights mostly. There is something very satisfying in pushing yourself over imagined limits and doing completely exhausting training sessions, after which you can barely move. Yeah, gym is fun!

I’ll also get ideas for work at the gym, usually related to current work stuff: how are we going to approach creating our environment matrix for an upcoming release or how can we improve a process that was raised during a Lessons Learned session. Nothing revolutionary that would change the IT world, but very down-to-earth solutions that help us get better and better at what we do.


Dinesh Nirmal

Vice President, Analytics Development

Follow me on twitter @DineshNirmalIBM

 

Picture4PG

Piotr’s hometown is  Bedzin, Poland, most famous for its castle.

 

Picture5PG

Piotr: “A nearby roundabout, which was designed back when we had Communism here aiming to be perfect non-collision intersection for cars and trams. What we are left with, is this ’roundabout’ that is called ‘a kidney’ and where cars cross paths with trams three times before they leave it 🙂 It makes just about as much sense as Communism itself.”

Favorite programming language: JavaTM

Top 5 authors:

  1. Terry Pratchett
  2. Andrzej Sapkowski
  3. James Whitaker
  4. J.K. Rowling
  5. Wiktor Suworow

  1. IBM Haifa Research Laboratory Combinatorial Test Design (CTD) http://research.ibm.com/haifa/dept/svt/papers/The_value_of_CTD.pdf

Mihai Nicolae: Code Craftsman, Aspiring Chef and World Traveler

As much as I love meeting long-time IBMers and hearing their perspective on our evolution over the years, it’s a special pleasure to visit with our newer team members and to hear their visions for IBM’s future. You’ll remember my conversations with Martyna Kuhlmann, Ketki Purandare, and Phu Truong.

This time, I’m talking with Mihai Nicolae, a developer working out of our Markham office near Toronto. In just two years with IBM, Mihai has already been transformational on flagship products — Db2 , Watson Data Platform, and Data Science Experience. He’s currently trading time between DSX Local, IBM Data Platform, and the new Machine Learning Hub in Toronto.

MNPicture1

Dinesh and Mihai

I hope you’ll take as much inspiration from our conversation as I did.

Dinesh: Where are you from originally?

Mihai: Romania. I’m very grateful — and always will be — for my parents having the courage to emigrate to Canada in their forties for me to have the opportunity to attend university here.

Dinesh: I bet they’re proud of you.

Mihai: Oh absolutely, I can’t ever have a doubt about that based on how much they talk about it.

Dinesh: If my son’s first job out of college was at IBM, I’d be proud, too. Tell me about your experience so far.

Mihai: I’ve been at IBM for two years full-time. Currently, I’m working on DSX Local and IBM Data Platform, which just started in January, after my time on the Db2 team. It’s been an amazing journey, especially GA-ing the product in only 4 months.

Dinesh: First of all, thanks and kudos to you and the team for delivering DSX in such a short amount of time. You’re now diving into machine learning. Did you take ML classes at university?

Mihai: I took one Intro-to-AI class, but frankly I feared the stats component of the ML course — and that 40% of my performance would depend on a 2-3 hour, stats-intensive exam.  At this point, I know that no hard thing is insurmountable if you put in the work.

MNPicture2

Mihai at Big Sur.

Dinesh: Where do you see machine learning or data science going from here?

Mihai: I think it’ll be a vital component of every business. AI is the once-in-a-lifetime technology destined to advance humanity at an unprecedented scale. I think the secrets to defeating cancer, reversing climate change, and managing the global economy lie within the growing body of digital data.

But reaching that potential has to happen with the trust of end-users, trust in security and lack of bias. That’s why I think IBM will be a leader in those efforts: because IBMers really do value trust — I see it in the way we interact with each other day to day, as much as I see it in our interactions with clients. Trustworthiness is not something that can be compartmentalized.

Dinesh: Well said. I know you also work on encryption. Where does that fit in?

Mihai: When data is the core of everything, encryption is critical — encryption plus everything to do with security, including authentication and authorization. They’re all essential for earning and keeping user trust.

Dinesh: I love your passion for your work. Do you ever leave the office? What are your hobbies?

Mihai: Ha! I go to the gym, and I recently subscribed to one of those recipe services that delivers ingredients in pre-determined amounts. But traveling is really my fixation: California, Miami, Rhode Island and Massachusetts last year. And this year, I’ve been to the Dominican Republic, and then I head to Nova Scotia this summer.

MNPicture3

…and at the Grand Canyon.

Dinesh: Nice. Do you have a particular dream destination?

Mihai: Thailand has a moon festival in April, where you get to have a water fight for three days. It’s the Thai new year. That might be my next big pick.

Dinesh: I travel a lot and I think there can be something really creative about travel, especially with the types of trips you’re talking about. I like asking developers whether they think of themselves as creative people. What’s your thought?

Mihai: Travel is definitely creative, but you’re making me think of the recipe service. I think of cooking from a card like learning programming from sample code: You get the immediate wow factor from building and running the working product but you don’t necessarily understand how and why the pieces fit so well together, or even what the pieces are. But over time, and with experience, you get understanding and appreciation. I think that’s when innovation and creativity can flourish.

Dinesh: Thanks, Mihai. Thanks for taking the time, thanks for the great work, and thanks for evolving IBM for our customers.

Dinesh Nirmal

Vice President Analytics Development

Follow me on twitter @DineshNirmalIBM

 


Home town: Constanta, Romania

Currently working on: DSX Local, Machine Learning Hub Toronto

Favorite programming language: Python

Top 5 future travel destinations:

  1. Thailand for Songkran
  2. Australia for scuba diving in Great Barrier Reef and surfing
  3. Brazil for Rio Carnaval
  4. Mexico for Mayan ruins and Diez y Seis
  5. Germany for Oktoberfest and driving on the Autobahn

 

 

Opening up the Knowledge Universe.

IBM Data Science Experience Comes to a Powerful, Open, Big Data Platform.

I have just finished presenting at the DataWorks Summit in San Jose. CA. where a partnership between IBM and HortonWorks was announced the aim of which is to help organizations further leverage their Hadoop infrastructures with advanced data science and machine learning capabilities. 

Some Background.

When Apache™ Hadoop® first hit the market there was huge interest in how the technology could be leveraged – from being able to perform complex analytics on huge data sets by using a cluster of thousands of cheap commodity servers and Map/Reduce  – to predictions that it would replace the enterprise data warehouse.  About three years ago Apache™ Spark™ gained a lot of interest unleashing a multi-purpose advanced analytics platform to the masses – a platform capable of performing streaming analytics, graph analytics, SQL and Machine Learning with a focus on efficiency, speed and simplicity.

I won’t go into details on the size of the Hadoop market, but many organizations invested heavily for numerous reasons including, but not limited to, it being seen as an inexpensive way to store massive amounts of data, the ability to perform advanced queries and analytics on large data sets with rapid results due to the Map / Reduce paradigm.  From one perspective, it was a data scientist’s dream to be able to reveal deeper insights and value from one’s data in ways not previously possible.

Spark represented a different but complementary opportunity allowing data scientists to apply cognitive techniques on data using machine learning – and other ways of querying data – in HDFS™ as well as data stored on native operating systems.

Many organizations including IBM made investments in Hadoop and Spark based offerings. Customers were enthused because these powerful analytics technologies were all based on open source representing freedom and low cost. Organizations including IBM participated in initiatives such as ODPi to help ensure interoperability and commonality between their offerings without introducing proprietary code.

Self-Service, Consumable, Cognitive tools.

Frustrated with IT departments not being able to respond fast enough to the needs of the business, departments sought a “platform” that would allow them to perform “self-service” analytics without having to be die-hard data scientists / engineers or developers.

The IBM Data Science Experience (DSX) emerged as a tool that could help abstract complexity, unify all aspects of data science disciplines regardless of technical ability to allow a single user or multiple personas to collaborate on data science initiatives on cloud, locally (on-prem) or while disconnected from the office (desktop).  Whether you prefer your favorite Jupyter notebook, R Studio, Python, Spark or a rich graphical UI that provides advanced users with all the tools they need – as well as cognitively guiding inexperienced users through a step by step process of building, training, testing, deploying a model – DSX helps unify many aspects into an end to end experience.

DSX Arch1
Figure #1 : Data Science Experience – Making data simple and accessible to all. 

Enterprise Ready.

A lot needs to happen for machine learning to be enterprise ready and robust enough to withstand business critical situations. Through DSX (see figure #1), advanced machine learning capabilities, statistical methods and advanced algorithms such as Brunel visualizations are available. Sophisticated capabilities such as automated data cleansing help ensure models are executing against trusted data. Deciding which parts of the data set are key to the predictive model (feature selection) can be a difficult task. Fortunately, this capability is automated as part of the machine learning process within DSX.  An issue that many data scientists face is the potential for predictive models to be impacted by rogue data or sudden changes in the market place.  IBM machine learning helps address this issue by keeping the model in its optimal state through a continuous feedback loop that can fine tune parameters of the model without having to take it off line.  This allows the model to sense and respond to each interaction (level of granularity defined by policy) without any human interaction.

A knowledge Universe – Unleashing Cognitive insights on Hadoop Data Lakes – with Power.

The potential of integrating the richness of DSX and the cognitive ML capabilities with all that data residing in HDFS (as well as many other data sources outside of Hadoop) is an exciting proposition for the data science community. It could help unlock deeper insights, increasing an organization’s knowledge about itself, the market, products, competitors, customers, sentiment at scale, at speeds approaching real time. One of the key features delivered as part of Hadoop 2.0 was YARN (yet another resource negotiator) that manages resources involved when queries are submitted to a Hadoop cluster, far more efficiently than in earlier versions of Hadoop – ideal for managing ever increasing cognitive workloads.

Simply put, I cannot think of a time where there has been a better opportunity for organizations to leverage their Hadoop investments until now.  The combination of Hadoop based technologies integrated with IBM ML and DSX unleashes cognitive insights to a very large Hadoop install base.

All very promising so far –but there is one more nugget to unleash that will help organizations with their cognitive workloads. IBM just announced HDF 3.0 for IBM Power Systems, bringing the built-for-big-data performance and efficiency of Power Systems with POWER8 to the edge of the data platform for streaming analytics applications.  This solution joins HDP for Power Systems, recently launched, which offers a 2.4X price-performance advantage [1] versus x86-based deployments.

I’m excited at the possibilities that lie ahead – how data scientists and machine learning experts might leverage and benefit from our offerings and the integration with Hadoop infrastructures – how they might take it to the next level in ways we’ve not yet imagined as we continue to enrich our offerings with more capabilities.

For more information on how to get started with Machine Learning click the link below : datascience.ibm.com

 

Dinesh Nirmal – VP Analytics Development.  

Follow me on twitter @DineshNirmalIBM

 


 

IBM, the IBM logo, ibm.com, IBM Elastic Storage Server, IBM Spectrum Scale, POWER8 and Power Systems are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their rst occurrence in this information with a trademark symbol (® or TM), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Apache Spark, Apache Hadoop, HDFS, Spark, Apache, Hadoop and the Spark, Hadoop logos are trademarks of The Apache Software Foundation.

Other company, product or service names may be trademarks or service marks of others.

1 – Based on IBM internal testing of 10 queries (simple, medium, complex) with varying run times, running against a 10TB DB on 10 IBM Power Systems S822LC for Big Data servers (20 C/40 T), 256GB memory, HDP 2.5.3, compared to published Hortonworks results based on the same 10 queries running on 10 AWS d2.8xlarge EC2 nodes (Intel Xeon E5-2676 v3), HDP 2.5. Individual results may vary based on workload size and other conditions.  Data as of April 20, 2017; pricing is based on web prices for the Power Systems S822LC for Big Data (https://ibm.biz/BdiuBC) and HP DL380 Intel Xeon HP DL380; 20 C/40 T, 2 X E5-2630 v4; 256 GB found at marketplace.hpe.com

Martyna Kuhlmann – DB2 Regression Tester and Artist.

Featured

All tech companies draw international talent, but arguably none more so than IBM. Our Analytics Development team alone has labs in Canada, Germany, India, Japan, China, and the US. It’s fascinating for me to hear first-hand the different paths you took to IBM; we are richer for your talent and for the different ways of thinking and for being you and what bring to the team. From Martyna, I learned what it’s like to live in a tiny village in Poland, steeped in the intimacy of village life and in Poland’s tradition of excellence in mathematics.

You came to IBM as an intern from the University of Saskatchewan. What was it like, moving from the prairies of Canada to the big city?

Leaving my village in Poland was much harder than moving from Saskatoon to Toronto. I grew up in a village of just 500 people, so when I left at 19 years old I was saying goodbye to many people I’d known since I was born: friends and family, but also the people in the shops, the personae of village life. In a small village, people are always helping each other; you know everyone. Now I live in an apartment building in Markham and I don’t know the people living next-door!

MKPicture1

What was it that led you to choose computer science as a field of study?

Both my parents had studied math, so that was the family business, you could say, and my plan going into university – that lasted about eight months, by which time I’d had enough of calculus to last a lifetime. I took one computer science class and absolutely fell in love. After three years I interviewed at IBM and I can now admit that I was extremely stressed about it! I hardly slept the night before. I wanted so badly to work for IBM. I got the job, and it was a dream come true. My parents, on the other hand, were supportive but disappointed, in a minor key, not by IBM but by my choice of field: I was the last hope in the family to carry on their math legacy (my sisters, most rebelliously, studied psychology and neuroscience), so when I told my father his comment was, “Well, better computer science than statistics.”

You are practically a black sheep! Why was computer science love at first sight – or first class – for you?

Because it’s not about solving the equation. It’s about creating universal solutions, and I found coming up with innovative ways to solve a problem intensely rewarding. Part of it is the immediate value. I have a problem, I write a program, problem solved. It takes longer to write a big piece of software, but each function is a tangible step towards your goal. In math, you come up with a theorem and it takes months to prove. You could have an idea and start exploring it just to realize a week later that you’ve hit a dead end and you have to start all over again.

MKPicture2

The potential for real-world application is also satisfying. My parents’ work might find its applications in 50, 100, or 200 years — that doesn’t mean it’s less valuable, but since I’m a very impatient person I wouldn’t be able to do work with gratification delayed beyond my lifetime. I need to see the impact of my work right away.

What are you working on now?

I work on the infrastructure team, maintaining an environment for testing. Some of the work is fascinating, and some is not especially glamorous, but at IBM you always have a bonus factor: the people are wonderful. That’s what really makes the difference in my work – solving problems with very smart people from all over the world, who also happen to be incredibly nice to be around.

You’ve perhaps found some of the sense of community of your home village — or fostered it, here at IBM. What do you like to do outside of work?

I find myself drawn to the most tedious hobbies imaginable. I picked up painting recently, and I sew … painting was an antidote to being on the computer for hours and hours, a way to rest my eyes and my mind and to be creative using a completely different part of myself. I’ll sit in front of a canvas for hours painting, I find it deeply relaxing. I need to be completely clear here: I have no talent, none. I paint because I love it!

I also have a cat, named ‘Data’ – she has chewed through 23 computer cables in my home. I’m counting, because I actually find it kind of impressive – her focused dedication to cable destruction.

MKPicture3

A lot of the people I interview seem to like food – Sebastian Muszytowski, one of our Python experts in Boeblingen, loves to bake, and Phu Truong knows all the best places to eat out in San Jose.

Not me. I eat once a day, at 6 pm. But I love coffee.

What do you see yourself doing in the future? What excites you?

That’s a tough question! I suppose it’s having an impact. Right now, there is a lot of potential on the infrastructure team – we’re planning to create some regression tools and leverage automation, which is all very exciting!  but the minute I notice there are not as many areas to improve, I will look for another role at IBM.

Yes, it’s important that we use our own machine learning technology, so that’s wonderful.

Absolutely, and the potential is so exciting. Sometimes I’m working on code developed years ago, so I can’t just stroll over to the creator and ask about it, but if we can create self-healing technology, imagine the possibilities!

 


 

Home town: Księży Las, Poland
Currently working on: DB2 regression infrastructure and tooling
Favorite programming language: Prolog
Top 5 painting inspirations:
1) A busy day at work (art relaxes me)
2) Struggling with a problem (engaging the right hemisphere can work miracles!)
3) Cool characters from games and movies
4) Art on DeviantArt
5) Lack of internet connection
Dinesh Nirmal

Vice President Analytics Development.

Follow me on Twitter @dineshnirmalIBM

Meet Sebastian – A developer with a recipe for success

What a pleasure it was to meet Sebastian! He was recommended to me as a technical whiz with Python™ skills par excellence, but he impressed me just as much with his infectious, happy energy, his thinking on the advancement of society and technology, and how he chooses to spend his time sharing his passion for electronics and software with children and adults at his local community center. Sebastian hails from a close-knit village in the Ruhr Valley — perhaps that’s where he learned how to be effortlessly generous. Like all of you, I am constantly learning — not just about business or the next turn of the blade in machine learning, but about life, empathy, and leadership. More and more this year I’ve noticed the difference positive leadership makes. Sebastian, though a very young man, had much to teach me on this score.

When you walked into this room, you brought with you a burst of energy. I felt more positive as soon as we started talking — and I am already a very positive person. How do you do that?

SebYPC1

By believing in a cause. Positivity is what we all need in life, and in business. If you are stretching yourself you’ll inevitably encounter failure and distress, but you have to stay positive. If we are talking about a group of people having a positive attitude, it doesn’t matter where you come from, or how old you are, it only matters that you all believe in the same cause.

What is the cause you believe in?

At work, it’s the team. We are all working on IBM DB2 Analytics Accelerator for z/OS, and I’ve never experienced a team that is as close together as this one, even though we are working on so many different parts. That’s the great aspect. When it comes to designing a new feature, we have to congregate and think about lots of different use cases. It’s not a simple product. Although we consider ourselves as writing “glue code,” we have to take special care with every little aspect and think through the consequences of potential failure. If I make a mistake in programming or designing a feature, it has a heavy impact on customers, and I know intimately what that can feel like from when I was in a customer-facing situation.


“Seeing someone learn and advance, and become an expert themselves, it’s the best thing that you can see. It lays the groundwork for society to advance.”


You started your career not long ago in customer support and now you’re a developer on a critical analytics product for large enterprise. What was it like, for a social person like you, to make the leap from facing customers to facing an Integrates Development Environment (IDE)?

SebYPC2

It was natural. I did it using communications, and deep technical knowledge. I studied computer science at university, as a lot of people who work at IBM do, but we specialized in intercultural and international communications. We learned to communicate with passion and dedication, and to have empathy for other people and their needs and demands. My job in support was to understand the customer’s vision, and to show them that we at IBM are great partners to them. I also have deep technical knowledge, so now, knowing the architecture and where to expand it, that’s just awesome. But the foundation is the clients. They put so much trust in us that we have to give back to them.

Are you just as intensely involved with life outside of work? 

I’m interested in hardware, not just software: I love to lay out printed circuit boards and teach children how to solder and how to programmatically control it. It is a great balance to the complex software of my work life. With hardware, you can achieve simple things, like making an LED blink, and it makes children crazy with excitement.

You volunteer with children?

Absolutely! And adults. It’s great to see people learn and to share your knowledge, because sharing is what advances all of us. It helps me to find ways to explain what I know in different words. And, seeing someone understand what you just said, seeing someone learn and advance, and become an expert themselves, it’s the best thing that you can see. It lays the groundwork for society to advance.

SebYPC3

For such a young person, you speak profoundly, and you are involved with noble causes: sharing your time and knowledge to move society forward. It maps exactly to what you do at work: using empathy and knowledge to advance the product. What do you do for downtime? Or is it all uptime?

Oh no! I love to do things with my friends. I am a baking enthusiast, and I frequently come to work on a Monday with lots of cookies and a big cake to share. I can relax if I bake. I love going to movies with friends and playing board games — that’s a great thing — and walks in nature. Nature helps me find my inner point of …

…tranquility?

That is saying a little too much I think, but some peace, and calm.

Dinesh Nirmal,

Vice President Analytics Development

Follow me on twitter @DineshNirmalIBM


Name: Sebastian Muszytowski

Hometown: Ruhr Valley
Currently working on: IBM DB2 Analytics Accelerator for z/OS
Favorite Programming Language: Python™
Top 5 movies to see with friends:

1) Hedwig and the Angry Inch
2) Scott Pilgrim vs. The World
3) Juno
4) Little Miss Sunshine
5) Deadpool  

Sebastian’s Favorite New York Style White Chocolate Cheesecake with Blueberries.

Ingredients:
200 g whole wheat cookies or Amaretti biscuits
100 g butter
250 g white chocolate
100 g crème fraîche (or heavy whipping cream)
600 g cream cheese
1 tbsp vanilla flavored sugar (or vanilla extract)
100 g powered sugar
a hand full of washed blueberries
 
How To:
0) Preheat your oven to 180°C or 350°F
1) Crumble the cookies (either by hand or in a food processor)
2) Melt the butter (short 10 seconds bursts in the microwave are fine for melting. Give it a good stir after each 10 second burst. Be cautious since butter in the microwave can become a huge mess if you heat it too quickly.)
3) Put some non-stick backing paper into the backing tin or use some butter or non-stick baking spray to cover the area of the baking tin.
4) Combine your crumbled cookies and the melted butter and put it in the baking tin to form the bottom of your cheesecake.
5) Put it in the oven for about 10 minutes and let it completely cool. (Hint: you do not need your oven any longer – you can turn it off ;-))
 
For the yummy cheesecake filling:
1) Chop up the chocolate in small pieces and mix it with the créme fraîche (or heavy whipping cream)
2) Heat it and stir it until it combines (I recommend short microwave bursts or a double boiler to do so)
3) In another bowl mix the creme cheese, vanilla sugar (or extract) and powered sugar until it is well combined
4) Slowly add the chocolate-creme-fraiche mixture into the bowl while you constantly stir.
5) Once it is combined (do not over-stir!) put it on top of your cooled cheesecake bottom, flatten the top and let it sit in the freezer for a while.
 
Decoration time!
1) Put some of the washed blueberries on top of the cheesecake to make it look even better. Be assured that it tastes even more delicious with them!
2) For an even better effect you can grate some left over white chocolate (if there is any) to make the cake even more attractive.

“Python” is a registered trademark of the Python Software Foundation.

The Data Scientist Who “Listens to the Problem”

My most recent in-flight reading was Thank You for Being Late. In it, Thomas Friedman says risk of AI isn’t that it’s going to take over humanity, HAL-like, but that we as humans could become so entranced by technology that we’ll neglect to teach it human values. It’s not machines v. humans or technology v. creativity. The more technology develops, the greater the opportunity to add to it our kindness, our fairness, and our creativity.

Jorge Castañon, Data Scientist at the IBM Machine Learning Hub and this week’s “You in the Private Cloud,” interviewee, clearly agrees. He and I met this week to discuss math, art, and the future of data science.

What was your first job at IBM?

To understand what data science is. There were so many different definitions! I decided it’s the combination of three things: mathematics, computation, and creativity. You need the creativity to listen to the problem and come up with the math. You need the math because data science requires a very deep understanding of the math that lies behind it. Then you need to compute the solution.

What do you mean, “Listen to the problem?”

Math is like a foreign language that not everyone can speak. When I’m listening to a problem, I’m translating from English to math and then translating back to English to continue the conversation.

jorge1

The mathematics is distinct from the computation?

Yes. You think of a method mathematically. You eventually need to implement it in the computer: that’s the algorithm part. But first, it’s you and a blank piece of paper, and your thoughts, and eventually a math solution. The first person who thought about linear regression or least squares, that person was mathematical. It was a bunch of data points in space, and then, “Let’s find a model that fits those points” — but first it was math.

IBM was named on Gartner’s Magic Quadrant for Data Science Platforms for 2017, because of DSX with machine learning, and also the work you and the team are doing. A lot of it is side-by-side with clients: what’s that like?

It’s super fun! Learning about new problems is the best part of data science. The minute you start a conversation with a domain expert, to see what are the important parts of the model, what you can use for your math solution: that’s the exciting part. Talking to customers is a way to find the most interesting problems to solve.

jorge2

I would imagine coming out of Rice with a PhD in Computational Mathematics that you had a lot of career choices. Why did you choose tech and why IBM?

Rice University is in Houston, so there were opportunities in the financial world and the energy sector and a lot of money to be made. I went to a conference and met IBM recruiters and got good indication of the spectrum of expertise at IBM. I felt I would be able to go wherever I wanted to in terms of the research and technical challenges; I would not be limited to one narrow role.

What’s the one thing about work that you are most excited about?

Collaboration. As a computational mathematician, you know a lot about certain things. But to go and talk about energy efficiency, or credit unions, or TV marketing, that gives me new topics where I can apply math and make a difference: to health care for example, or by making a building more efficient.

You are working at the edge of technology that doesn’t quite exist yet.

Definitely. My first project was to identify what is data science: that was unstructured. Then, how to use data science in our products: unstructured. How to apply machine learning: unstructured. It’s very exciting, to find the structure of things that are amorphous or not yet reified. And that’s what mathematics is. It goes back to my whole path, to the creative problem-solving that drives me.

jorge3

Where do you see data science going? Is it part of the machine learning path, or will it diverge?

It’s an open question as to whether data science is going to be automated and humans won’t be needed. I think they will be.  The creativity aspect of data science cannot be automatic.

What do you do for fun outside of work?

I love art, and traveling with my wife: she’s also an applied mathematician. We got to museums and I take photographs of art. I used to do life drawing, but after the PhD and work — you get busy! I love James Turrell in particular; his work is based on what he called “the geometry of light” and he studied math in college.

Customers tell me it’s not just our skills they appreciate, it’s the commitment we make to their success, and they see that from working directly with you and IBMers like you. Thank you.

You are welcome. It is a pleasure to work here. I have a lot of space to grow.


Name: Jorge Castañon

Years at IBM: 3

Home town:  Mexico City

Currently working on: IBM Machine Learning Hub

All-time top five artists:

  1. Francisco Toledo
  2. James Turrell
  3. Willem De Kooning
  4. Mark Rothko
  5. M.C. Escher

 

Dinesh Nirmal,

Vice President Analytics Development

Follow me on twitter @DineshNirmalIBM

IBM Machine Learning for z/OS – Like no other

Featured

Like no other Private Cloud

With many of the top banks, retailers, and insurance organizations using IBM® z Systems® , combined with tried and tested virtualization capabilities, EAL5+ security rating and the ability to handle billions of transactions a day[1], the platform becomes attractive as a private cloud for running advanced analytics as well as cloud managed services.

Those organizations are in an enviable position, with volumes of new and historical business-critical data available on such powerful and reliable systems. The sheer volume and velocity of the transactions, the richness of data in each transaction, coupled with data in log files, is a potential gold mine for machine learning applications to exploit cognitive capabilities and do smarter work, more intelligently — and more securely.

Leveraging Machine Learning on z Systems

Set against an asymptotic curve of information growth, Chief Information Officers and data scientists constantly battle to gain deeper insights from the volumes of transactions and log data on the platform (and many other platforms) and turn those insights into concrete gains. In most cases, the CIOs already have astute teams of data scientists and data engineers combing through this data — and yet they see their teams struggle to make enough time for the deep work they’re trained to do.

“Enterprises are well aware of the tremendous potential and value of the transactional and operational data on their z Systems. Yet most of them struggle with how to expose the data within the enterprise in a secure and controlled way thats still flexible enough to foster innovation and support efficient access for a variety of roles data scientists, operations, and application developers. Not an easy task, but organizations that can do so potentially obtain an edge over the competition.”

—Andrei Lurie, DB2 for z/OS Architect, IBM

Machine learning has the potential to be the perfect intelligent app — to hike efficiency, create and cement deep personal relationships with customers, push into new lines of business and new markets while helping to minimize financial risk and fraud.

I have heard customers say that the mainframe has never been hacked. But it doesn’t mean cyber criminals aren’t trying, nor that unscrupulous people aren’t attempting to commit fraud. Having applications that embed predictive models that can analyze, sense, react and become smarter with every transaction and interaction in such a business critical environment brings us a long way toward identifying and preventing potential fraud.

But z Systems is not just about transactions. It is already considered to be a hybrid transaction and analytics processing (HTAP) environment with a complete set of the analytics capabilities and acceleration technologies available today. IBM has also added full exploitation of Apache Spark™ on both z/OS and Linux® on z Systems – a solid base for building, testing and deploying high performance machine learning applications.

“By running advanced Apache Sparkanalytics directly on their production systems, enterprises can improve both the efficiency and timeliness of their insights. Moving Spark inside the mainframe also simplifies and can help reduce security risks as there is only one copy of the data to protect, and that copy resides inside z/OS’s security rich environment.”

— Fred Reiss, Chief Architect, IBM Spark Technology Center

For all these reasons and more, we are delivering the full range of our machine learning capabilities to z/OS essentially bringing advanced ML to the world’s most valued data.

Machine Learning without Compromise.

When asked to describe machine learning I break it down into three perspectives: Freedom, Productivity and Trust. I find these resonate well with customers’ needs.

Freedom. Think of freedom as a set of unified but powerful capabilities such as the flexibility of the interfaces that can be used to interact with machine learning — whether a Jupyter notebook or intuitive graphical interfaces catering to the needs of various personas from beginners to expert data scientists. With support for Python™, Java™, and Scala, different organizations can leverage their preferred programming language and skills when building machine learning applications. Machine learning from IBM can be developed on and deployed across different computing environments such as private cloud and public cloud – including IBM z Systems z/OS with a choice of frameworks such as SparkML, TensorFlow™ and H20.

With the data available to machine learning solutions, users can create advanced algorithms or choose from a set of predefined powerful algorithms and models without requiring advanced data science expertise.

Think of all this capability running on one of the highest performing platforms available: IBM z Systems. It means machine learning can be brought to bear many thousands of times per second[2] — which can help reduce costs and risks, finding and leveraging new opportunities at every transaction and interaction.

Productivity. To make machine learning consumable it has to be easy and intuitive for end users. To this end, IBM machine learning was built around three core principles of simplicity, collaboration (across multiple personas) and convergence of a wide range of technologies from our analytics portfolios and our research laboratories. The user experience is key, whether the user is a data scientist – advanced or beginner — or a computing generalist. Across personas, IBM Machine Learning lets users engage and collaborate on machine learning projects– leveraging the combined skills of the team. Wizards within the tools provide step-by-step processes and workflows that automate many aspects of building, testing and deploying learning machines. As part of the process the IBM Cognitive Assistance for Data Scientists (CADS) automates the selection of the best algorithm given a training data set. It starts by allocating a small part of the data set to each candidate algorithm, then estimates performance on a full data set. It uses the estimate to rank algorithms, and allocates more data to the best ones. It iterates until the best algorithms get all of the data set.

Trust. Once a model is built and tested, it needs to be deployed. A model – in fact the entire machine learning application (learning machine) — is similar to a living organism, evolving and adapting over time as it encounters new data with each transaction and interaction. This is achieved through a continuous feedback loop that enables the model to adapt and change, altering specific parameters within the model itself to become smarter and more consistent over time – while avoiding overfitting.  This auto-tuning is key to reducing manual intervention. Of course some human intervention or model adaptation may be necessary where a human judgement or decision is required. Therefore, keeping track of the version of the models over the lifecycle of the learning machine is important for audit purposes or to fall back to a previous version.  Another aspect of trust is of course the governance and security (the who, how, when, where) of the data, the models, and the many machine learning artifacts. IBM z Systems is recognized in the industry when it comes to security[3]– and a key reason why some of the biggest names and well known organizations across many industries run their business critical applications and data on the platform.

These three perspectives are summarized in the Figure #1 below.

ibmml3pillarspicture1

Figure #1 IBM Machine Learning the complete picture.

From a technology point of view, our aim is to free up data science teams to do the deep work that’s being asked of them — work that gets harder and harder as the world moves faster and with less certainty. Ultimately, the gains that CIOs are seeking will come from a collaboration between smart data systems and smart data scientists. Machine learning on z/OS will help enable and encourage that collaboration.

IBM Machine Learning Hub – Beyond the Technology

While the technology aspects may deliver very advanced machine learning capabilities, IBM recognizes the need to nurture and partner with organizations as they embrace and fully exploit its machine learning technologies. The first IBM Machine Learning Hub will provide the means to achieve this, with the aim to accelerate and enrich organizations’ machine earning knowledge and expertise.

The “hub” will allow organizations to access IBM world-class data science professionals who can provide education and training, expert advice on all aspects of machine learning – as well as lead and deliver proofs-of-concept and full client engagements. They focus on delivering tailored machine learning knowledge and skills transfer built around the needs and wants of customers. This combination of both the technology aspects and the knowledge / skills base is an opportunity to provide a unique machine learning experience what I consider to be the machine learning ecosystem.

Let me close this blog post by inviting you to take a look at a short video on machine learning here and reading the recent announcement of IBM Brings Machine Learning to the Private Cloud .

 

Dinesh Nirmal,

VP Analytics Development

Follow me on twitter @DineshNirmalIBM

 


[1] http://www-03.ibm.com/press/us/en/pressrelease/51623.wss 

[2] based on IBM SPSS Modeler Scoring Adapter for DB2 for z/OS performance http://www.ibmsystemsmag.com/mainframe/Business-Strategy/BI-and-Analytics/SPSS-Modeler-Scoring/?page=3

[3] EAL5 + Security Rating http://www.redbooks.ibm.com/redpapers/pdfs/redp5153.pdf


Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation (ASF).

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Python is a registered trademark of the PSF.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

TENSORFLOW is a trademark of Google Inc.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both.